Harnack Inequality for Second Order Linear Ordinary Differential Inequalities

نویسنده

  • Hannah Turner
چکیده

The Harnack Inequality is an important tool in the study of qualitative properties of solutions to elliptic and degenerate elliptic partial differential equations. Perhaps the first paper that discusses such an inequality for ordinary linear differential equations of second order is the article A Harnack Inequality for Ordinary Differential Equations [1]. The objective of this project was to extend the result of[l] to the ordinary differential inequality L[u]:s 0, where L[u] = u" + p(x)u' + q(x)u. We continued to extend this results by studying a Harnack-type inequality for L[u] :s f(x). To achieve this , we used some well-established facts on Maximum Principles from Protter and Weinberger's book [2]. We provide complete proofs for some of these results that are different from those presented in [2].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential Harnack Inequalities on Riemannian Manifolds I : Linear Heat Equation

Abstract. In the first part of this paper, we get new Li-Yau type gradient estimates for positive solutions of heat equation on Riemmannian manifolds with Ricci(M) ≥ −k, k ∈ R. As applications, several parabolic Harnack inequalities are obtained and they lead to new estimates on heat kernels of manifolds with Ricci curvature bounded from below. In the second part, we establish a Perelman type L...

متن کامل

Interpolating between Li-Yau and Chow-Hamilton Harnack inequalities along the Yamabe flow

In this paper, we establish a one-parameter family of Harnack inequalities connecting the constrained trace Li-Yau differential Harnack inequality to the constrained trace Chow-Hamilton Harnack inequality for a nonlinear parabolic equation with respect to evolving metrics related to the Yamabe flow on the n-dimensional complete manifold. M.S.C. 2010: 53C44, 53C25.

متن کامل

Differential Harnack Estimates for Backward Heat Equations with Potentials under the Ricci Flow

In this paper, we derive a general evolution formula for possible Harnack quantities. As a consequence, we prove several differential Harnack inequalities for positive solutions of backward heat-type equations with potentials (including the conjugate heat equation) under the Ricci flow. We shall also derive Perelman’s Harnack inequality for the fundamental solution of the conjugate heat equatio...

متن کامل

Lecture Notes on Geometric Analysis

§0 Introduction §1 First and Second Variational Formulas for Area §2 Bishop Comparison Theorem §3 Bochner-Weitzenböck Formulas §4 Laplacian Comparison Theorem §5 Poincaré Inequality and the First Eigenvalue §6 Gradient Estimate and Harnack Inequality §7 Mean Value Inequality §8 Reilly’s Formula and Applications §9 Isoperimetric Inequalities and Sobolev Inequalities §10 Lower Bounds of Isoperime...

متن کامل

Modified Laplace Decomposition Method for Singular IVPs in the second-Order Ordinary Differential Equations

  In this paper, we use modified Laplace decomposition method to solving initial value problems (IVP) of the second order ordinary differential equations. Theproposed method can be applied to linear and nonlinearproblems    

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014